Prediction of sacrificial material ablation rate by corium jet impingement
نویسندگان
چکیده
منابع مشابه
Improving Cyclone Efficiency by Recycle and Jet Impingement Streams
In this paper a new process is presented for improving efficiency of cyclone de-dusting systems. The cyclone is coupled with a specially designed cylindrical chamber which includes a rotating tube inside it with air impinging nuzzles, drilled on the peripheral surface of the tube. The nuzzles help in pushing and throwing the particles to the outer radius distances during downward flow of du...
متن کاملThermal Performance of Jet Impingement with Spent Flow Management
The present study proposes novel micro-jet impingement heat sink with effusion holes for flow extraction. The design consists of impingement nozzles surrounded by multiple effusion holes to take away the spent fluid. A three-dimensional numerical model is used for steady, incompressible, laminar flow and conjugate heat transfer for the performance analysis of the proposed design. The computatio...
متن کاملLDA Experimental Data of Three-Poster Jet Impingement System
During its near-ground hovering phase a Short Take-Off and Vertical Landing (STOVL) aircraft creates a complex three-dimensional flow field between jet streams, the airframe surface and the ground. A proper understanding and numerical prediction of this flow is important in the design of such aircraft. In this paper an experimental facility, used to gather validation data suitable for testing C...
متن کاملimproving cyclone efficiency by recycle and jet impingement streams
in this paper a new process is presented for improving efficiency of cyclone de-dusting systems. the cyclone is coupled with a specially designed cylindrical chamber which includes a rotating tube inside it with air impinging nuzzles, drilled on the peripheral surface of the tube. the nuzzles help in pushing and throwing the particles to the outer radius distances during downward flow of dust i...
متن کاملNanofluid impingement jet heat transfer
Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Energy Engineering
سال: 2014
ISSN: 1598-7981
DOI: 10.5855/energy.2014.23.3.021